ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
D. L. Porter, D. C. Crawford
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S110-S122
Technical Paper | doi.org/10.1080/00295639.2021.2009983
Articles are hosted by Taylor and Francis Online.
The Fuel Performance Design Basis for the Versatile Test Reactor begins with requirements to maintain safe and efficient reactor operation. For the metal-fueled Versatile Test Reactor, this means a limited number of fuel rod breaches, no fuel melting under steady-state operation and anticipated transients, and continuity of the fuel rod and assembly configuration to avoid impacts to operations of safety systems, maintain expected coolant flow, and allow for efficient fuel handling. Using a large database gathered from previous testing, data were examined to identify and establish preliminary limits on fuel operating conditions. Fuel performance aspects important to fuel operating limits have been identified, including cladding creep, which is addressed with a cladding deformation limit to ensure a limited cladding breach. In addition, fuel-cladding chemical interaction is addressed through limits on cladding temperature and time-at-temperature for steady-state operation, transients, and accidents to mitigate effects leading to cladding breach or fuel melting. Through the implementation of these limits, cladding breach, fuel melting, and deleterious fuel rod and assembly dimensional changes will be prevented.