ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Tingzhou Fei, Zhaopeng Zhong, Samuel E. Bays, Florent Heidet
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S98-S109
Technical Paper | doi.org/10.1080/00295639.2021.1991760
Articles are hosted by Taylor and Francis Online.
The Versatile Test Reactor (VTR) is currently under development by the U.S. Department of Energy. It will provide very high fast neutron flux irradiation capabilities that are currently unavailable in the United States. Given the increasingly large number of advanced reactor concepts being pursued in recent years, this irradiation testing capability will be essential to support maturation of these designs. Radiation protection is an important part of the VTR design. High neutron fluxes can pose a challenge for radiation protection of the structures and equipment near the reactor core. This paper provides a summary on the status of the radiation protection considerations and shielding analysis performed for VTR under a nominal operating condition. The main radiation sources identified and examined in the study are applicable only under this operating condition. The paper focuses on three areas of radiation protection and shielding: secondary sodium activation in the intermediate heat exchanger, air activation in the reactor vessel auxiliary cooling system, and dose rate above the head access area due to primary sodium activation. VTR design and development are continuously progressing, and as such, the shielding considerations discussed in this paper will evolve alongside the overall VTR design.