ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jack Galloway, Joshua Richard, Cetin Unal
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S50-S62
Technical Paper | doi.org/10.1080/00295639.2022.2053488
Articles are hosted by Taylor and Francis Online.
The Versatile Test Reactor (VTR) is a sodium-cooled fast reactor designed to accelerate the design and approval of new nuclear material and reactor concepts by providing a high neutron fast flux environment on U.S. soil. To ensure that the reactor simultaneously achieves the target irradiation environment while maintaining sufficient margin to safety limits, supporting design analysis of the VTR has been performed using MCNP and TRACE. High-fidelity MCNP calculations have been performed that confirm design parameters, such as control rod worth and neutron and photon flux distributions, and provide needed reactivity coefficients for TRACE analyses. The MCNP simulations additionally provide fuel rod power profiles of interest to fuel performance designers and provide an excellent model for experimental cartridge design within the VTR core. TRACE simulations of several postulated transients, such as station blackout, loss of heat sink, and transient overpower, have been performed (results included here are limited to the transient overpower), and the obtained results confirm the robust safety behavior of the VTR. The TRACE simulations provide a valuable confirmatory transient analysis capability using a U.S. Nuclear Regulatory Commission–developed safety analysis tool incorporating inputs from the high-fidelity neutronic simulations performed with MCNP. Taken together, the confirmatory analysis capability provided by MCNP and TRACE serves to further strengthen the understanding of and confidence in the VTR’s performance.