ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jack Galloway, Joshua Richard, Cetin Unal
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S50-S62
Technical Paper | doi.org/10.1080/00295639.2022.2053488
Articles are hosted by Taylor and Francis Online.
The Versatile Test Reactor (VTR) is a sodium-cooled fast reactor designed to accelerate the design and approval of new nuclear material and reactor concepts by providing a high neutron fast flux environment on U.S. soil. To ensure that the reactor simultaneously achieves the target irradiation environment while maintaining sufficient margin to safety limits, supporting design analysis of the VTR has been performed using MCNP and TRACE. High-fidelity MCNP calculations have been performed that confirm design parameters, such as control rod worth and neutron and photon flux distributions, and provide needed reactivity coefficients for TRACE analyses. The MCNP simulations additionally provide fuel rod power profiles of interest to fuel performance designers and provide an excellent model for experimental cartridge design within the VTR core. TRACE simulations of several postulated transients, such as station blackout, loss of heat sink, and transient overpower, have been performed (results included here are limited to the transient overpower), and the obtained results confirm the robust safety behavior of the VTR. The TRACE simulations provide a valuable confirmatory transient analysis capability using a U.S. Nuclear Regulatory Commission–developed safety analysis tool incorporating inputs from the high-fidelity neutronic simulations performed with MCNP. Taken together, the confirmatory analysis capability provided by MCNP and TRACE serves to further strengthen the understanding of and confidence in the VTR’s performance.