ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
F. Heidet, J. Roglans-Ribas
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S23-S37
Technical Paper | doi.org/10.1080/00295639.2022.2091907
Articles are hosted by Taylor and Francis Online.
The VTR is a 300-MW(thermal) sodium-cooled fast reactor (SFR) designed for the specific purpose of delivering unique testing capabilities to enable the advancement of all reactor technologies. With its flux level, irradiation volume, and operational flexibility, the VTR will enable accelerated testing of materials, fuels, and various components needing irradiation testing. Proven SFR technologies and design approaches have been leveraged in designing the VTR core, ensuring the highest possible readiness level. This resulted in the VTR using ternary metallic fuel and delivering fast flux levels in excess of 4 × 1015 n/cm2·s over large useful volumes, corresponding to about 60 dpa/year in steel. As part of the design efforts, the VTR core performance has been determined for a representative configuration, ensuring that the reactivity control systems offer sufficient shutdown margins, that the core can be safely cooled in all situations, and that reactivity feedback coefficients are conducive to a favorable safety behavior. Furthermore, the incorporation of features such as fuel assembly storage in the shield region supports the flexible and reliable operation of the VTR. Additional design work has been ongoing as well. This includes thorough shielding performance evaluations to ensure safe operation of the VTR, verification and validation of the design tools used to achieve compliance with Nuclear Quality Assurance (NQA-1) requirements, early assessment of the impact of irradiation experiments on the core performance envelope and associated margins, and in-depth uncertainty quantification efforts to quantify the anticipated range of performance characteristics. An experimental program supporting the VTR core design has been set up, with the current focus being on thermal-hydraulic experiments. The purpose of this experimental program is to obtain confirmatory measurements to serve directly as part of the core design basis or as part of the validation cases supporting the simulation tools used.