ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
F. Heidet, J. Roglans-Ribas
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S23-S37
Technical Paper | doi.org/10.1080/00295639.2022.2091907
Articles are hosted by Taylor and Francis Online.
The VTR is a 300-MW(thermal) sodium-cooled fast reactor (SFR) designed for the specific purpose of delivering unique testing capabilities to enable the advancement of all reactor technologies. With its flux level, irradiation volume, and operational flexibility, the VTR will enable accelerated testing of materials, fuels, and various components needing irradiation testing. Proven SFR technologies and design approaches have been leveraged in designing the VTR core, ensuring the highest possible readiness level. This resulted in the VTR using ternary metallic fuel and delivering fast flux levels in excess of 4 × 1015 n/cm2·s over large useful volumes, corresponding to about 60 dpa/year in steel. As part of the design efforts, the VTR core performance has been determined for a representative configuration, ensuring that the reactivity control systems offer sufficient shutdown margins, that the core can be safely cooled in all situations, and that reactivity feedback coefficients are conducive to a favorable safety behavior. Furthermore, the incorporation of features such as fuel assembly storage in the shield region supports the flexible and reliable operation of the VTR. Additional design work has been ongoing as well. This includes thorough shielding performance evaluations to ensure safe operation of the VTR, verification and validation of the design tools used to achieve compliance with Nuclear Quality Assurance (NQA-1) requirements, early assessment of the impact of irradiation experiments on the core performance envelope and associated margins, and in-depth uncertainty quantification efforts to quantify the anticipated range of performance characteristics. An experimental program supporting the VTR core design has been set up, with the current focus being on thermal-hydraulic experiments. The purpose of this experimental program is to obtain confirmatory measurements to serve directly as part of the core design basis or as part of the validation cases supporting the simulation tools used.