ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Huayang Zhang, Bin Zhong, Huayun Shen, Li Cheng, Jinhong Li
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1236-1246
Technical Paper | doi.org/10.1080/00295639.2022.2070386
Articles are hosted by Taylor and Francis Online.
Pinhole imaging is an important test technique to obtain information on the spatial distribution of the radiation field in the target region and has been widely used in nuclear physics and inertial confinement fusion (ICF). Coded-aperture, able to maintain good resolution as well as enhancing signal strength, has become a more frequently used method than pinhole imaging in experimental studies. Thus, implementing Monte Carlo simulations of coded-aperture imaging will improve coded-aperture design, image reconstruction, and other related works. However, the current international mainstream Monte Carlo transport simulation programs do not possess the ability to directly simulate coded-aperture imaging. This paper develops a relatively complete coded-aperture imaging simulation function on the Neutron Photon Transport System code based on the next-event estimation method. With the application of Monte Carlo simulation techniques, such as variance reduction and rejection sampling, it is capable of simulating coded-aperture accurately, flexibly, and efficiently, including problems of multiple shapes and even irregular geometry. The results are consistent with combined pinhole imaging, and the computational efficiency has been improved significantly.