ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Mohinder Singh, Akash Tondon, Bhajan Singh, B. S. Sandhu
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1172-1193
Technical Paper | doi.org/10.1080/00295639.2022.2067737
Articles are hosted by Taylor and Francis Online.
This work deals with the evaluation of interaction cross sections, effective atomic number, and effective electron density at gamma photon energies, not available from standard radioisotopes. The Compton scattering technique is used to obtain the required gamma energies within a specific range of energies from 241.8 to 401.8 keV to perform the radiation measurements. Radiation interaction parameters of some inorganic compounds (high-Z rare-earth nitrate hexahydrate), namely, Lanthanum(III) nitrate hexahydrate [La(NO3)3.6H2O] and Samarium(III) nitrate hexahydrate [Sm(NO3)3.6H2O], soluble in low-Z organic solvent (acetone) are evaluated. Six scattering angles are chosen to obtain six (not available from standard radioisotopes) Compton scattered energies to perform narrow-beam transmission experiments. An NaI(Tl) scintillation detector is used to detect the transmitted flux from the different solutions in various proportions. Photon interaction parameters useful in vast basic and applied fields are evaluated. The present measured results, obtained from the Compton scattered technique, are found to be in good agreement with the computed values of radiation interaction parameters obtained from the WinXCom program. The present data on rare-earth solutions have definite scientific importance in nuclear and radiation physics and fill in the gap of nonavailability of such data for radiation workers at these specific energies.