ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Alex Pegarkov, Shawn Somers-Neal, Edgar Matida, Vinh Tang, Tarik Kaya
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1161-1171
Technical Paper | doi.org/10.1080/00295639.2022.2067738
Articles are hosted by Taylor and Francis Online.
During a severe power reactor accident, the plant core can melt. The resulting mixture of molten nuclear fuel and other in-core materials is known as corium. For a Canada Deuterium Uranium (CANDU) reactor, the corium is expected to settle at the bottom of the calandria vessel, but there is a potential for some melt to flow through connecting piping and other penetrations. The flow of corium through these structures can be contained if melt solidification and thus plugging occur. A numerical model was created to simulate the flow of molten metal through an empty vertical pipe. This model was benchmarked to a previous analytical model and validated against experimental results with gallium metal (which is a metal with low melting temperature) as an alternative for corium. The numerical model predicted the penetration length of gallium with an average percent error of 10.3% when compared to the experimental penetration length results of gallium. The model was also updated to predict the corium penetration length in cooling pipes of the CANDU reactor during a severe accident.