ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Alex Shaw, Farzad Rahnema, Andrew Holcomb, Doug Bowen
Nuclear Science and Engineering | Volume 196 | Number 9 | September 2022 | Pages 1073-1090
Technical Paper | doi.org/10.1080/00295639.2022.2049993
Articles are hosted by Taylor and Francis Online.
As part of the nuclear data evaluation and validation cycle, the ENDF/B-VIII.0 cross-section library released in 2018 requires testing to determine areas of improvement and deterioration. Previous work by the authors investigated the performance of 16O, 56Fe, and 63,65Cu cross sections, with this study acting as an extension of the prior work. In addition to the isotopes and nuclear criticality safety benchmarks of interest to the prior work, benchmarks from the International Criticality Safety Benchmark Evaluation Project Handbook were selected for their keff sensitivity to 1H, C, 58,60Ni, 182,183,184,186W, 235,238U, or 239Pu cross sections and were modeled in the SCALE code system maintained by Oak Ridge National Laboratory. In total, 253 benchmark configurations were selected for their sensitivities and modeled using SCALE 6.2.4 Criticality Safety Analysis Sequences (CSAS) continuous-energy Monte Carlo keff calculations. This collection includes and expands upon the 99 benchmarks in the prior work. The AMPX-processed ENDF/B-VIII.0 library was decomposed into individual ENDF/B-VIII.0 datum libraries for each isotope of interest. Doing so allowed for the individual substitution of an ENDF/B-VIII.0 cross section in the place of ENDF/B-VII.1, determining isotope-specific effects of ENDF/B-VIII.0 relative to ENDF/B-VII.1. Full library calculations with entirely ENDF/B-VII.1 data or entirely ENDF/B-VIII.0 data were also executed. As a measure of performance, the average relative deviation was determined as the ratio of the deviation between calculated and experimental keff to the propagated calculational and experimental uncertainty. With calculated full library and isotope-specific ENDF/B-VIII.0 keff’s, an optimized combination of data libraries was estimated and confirmed with SCALE calculations. This showed that reverting 239Pu, 58Ni, 16O, and 65Cu cross sections to ENDF/B-VII.1 resulted in improved performance relative to the full ENDF/B-VIII.0 library. Across all 253 benchmarks, the average relative deviation was 1.29σ for the full ENDF/B-VII.1 library, 1.17σ for the full ENDF/B-VIII.0 library, and 0.97σ for the optimized combination. The reversion of 239Pu, 58Ni, 16O, and 65Cu cross sections to ENDF/B-VII.1 in the 99 benchmarks of the prior work resulted in further improved experimental agreement compared to the previously reported improvement from 16O and 65Cu alone. Therefore, it is suggested that applications with significant sensitivities to 239Pu, 58Ni, 16O, and 65Cu consider their choice of nuclear data library.