ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Kim Wei Chin, Rei Kimura, Hiroshi Sagara, Kosuke Tanabe
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 852-872
Technical Paper | doi.org/10.1080/00295639.2021.2018927
Articles are hosted by Taylor and Francis Online.
Past studies validated the feasibility of the photofission reaction ratio (PFRR) method using both Gaussian and bremsstrahlung photons to estimate the isotopic composition of nuclear fuel materials without relying on their self-generated neutron information. However, the current PFRR method cannot solve a multinuclide system with more than two nuclides because the instability of the inverse matrix increases with the addition of the number of nuclides. Thus, this research proposes a numerical method for solving the simultaneous equations of a three-nuclide system onto PFRR to estimate the isotopic composition of nuclides. The results show good reproducibility with all cases maintained within a 10% isotopic composition difference except cases 6 and 7 of the first two photon energy combination schemes with maximum composition differences of 15.6% and 13.9% for 10% actual composition, respectively. A 20% actual composition of case 5 for the second photon energy combination scheme has a deviation of 10.6%, which is slightly larger than the 10% composition difference too. Out of three photon energy combination schemes, 6 MeV – 6.5 MeV – 11 MeV has the highest coefficient of determination for all three nuclides and the smallest deviation of below 10% composition difference. Random sampling with normal distribution was performed on the loss to photofission particles from MCNP with 200 sets for each 10 cases on the 6 MeV – 7 MeV – 11 MeV photon energy combination to study the stochastic errors. The isotopic compositions were calculated with the same numerical method, and the difference between the estimated and actual compositions that resulted were fitted with R. The fitting results show good agreement within 91.5% confidence intervals.