ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Patrick J. O’Neal, Sunil S. Chirayath, Qi Cheng
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 811-823
Technical Paper | doi.org/10.1080/00295639.2021.2024037
Articles are hosted by Taylor and Francis Online.
A nuclear forensics technique, based on the maximum likelihood method, for the attribution of reactor type, fuel burnup, and time since irradiation (TSI) of separated pure plutonium (Pu) samples was previously developed at Texas A&M University. The method utilized measured values of ten intra-elemental isotope ratios in the Pu sample and a large database consisting of the values for these ratios as a function of the three attributes: reactor type, fuel burnup, and TSI. However, this method failed for Pu samples with mixed attributes. Hence, a new technique based on machine learning methods was developed that matched the capabilities of the previous maximum likelihood method for pure Pu samples. This new methodology used support vector machines for reactor-type discrimination and Gaussian process regression for fuel burnup quantification. The TSI was calculated analytically using the predicted reactor type and fuel burnup. This new method holds great potential for the attribution of mixed Pu samples.