ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Patrick O’Rourke, Scott Ramsey, Brian Temple
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 792-810
Technical Paper | doi.org/10.1080/00295639.2021.2018926
Articles are hosted by Taylor and Francis Online.
This work applies the Lie Group Theory (LGT) to the neutron slowing-down equations for the n’th lethargy interval with the goal of defining the symmetry group associated with Dawn’s analytical solution. We also demonstrate two competing methods of the LGT and how they each result in the same solution and symmetry group. The two methods differ by taking advantage of the definition of a symmetry group from either a geometrical perspective or an algebraic perspective. The methods are the Traditional Lie Algorithm, which we apply to the equivalent system of ordinary differential equations for neutrons slowing down, as well as the Grigoriev-Meleshko Method, which we apply directly to the Volterra integral equation for neutrons slowing down. We also discuss the physical meaning of the symmetry group related to Dawn’s solution.