ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Abhishek Chakraborty, Suneet Singh, M. P. S. Fernando
Nuclear Science and Engineering | Volume 196 | Number 6 | June 2022 | Pages 715-734
Technical Paper | doi.org/10.1080/00295639.2021.2011670
Articles are hosted by Taylor and Francis Online.
Large nuclear reactors operating in the thermal spectrum are prone to both global and regional oscillations in power due to variation of 135Xe concentration. These power oscillations are self-stabilizing up to a certain operating power level, beyond which spatial power control becomes necessary for suppressing these oscillations. Especially for large pressurized heavy water reactors (PHWRs), which are natural uranium–fueled reactors using heavy water as coolant and moderator, the modes of xenon instabilities decide the extent and scheme for spatial power control. In this paper, the effect of spatial control on the bifurcation characteristics is demonstrated using a two-region model. The error signal for movement of the reactivity device has a global component for bulk power control and a local component for regional power control. The amount of regional power control determines the power level at which the spatial xenon oscillations stabilize. Using bifurcation analysis, it is found that in case of limited regional control, both supercritical and subcritical Hopf bifurcations exist, whereas in the case of increased regional control only supercritical Hopf bifurcations exist. However, these supercritical Hopf oscillations are due to time lag in control and have short timescales and lower amplitudes as compared to xenon oscillations. Hence, a proper choice of spatial control enables a PHWR to operate at rated full power capacity without any spatial Xenon instability.