ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Muhammad Rizki Oktavian, Oscar Lastres, Yuxuan Liu, Yunlin Xu
Nuclear Science and Engineering | Volume 196 | Number 6 | June 2022 | Pages 651-667
Technical Paper | doi.org/10.1080/00295639.2021.2017664
Articles are hosted by Taylor and Francis Online.
Due to the low computational cost, nodal diffusion methods are still commonly used to simulate full-core reactor problems. This work represents the developmental effort to build an accurate nodal kernel to treat hexagonal geometry in the core simulator code PARCS. An innovative method called TriPEN-9 has been developed by splitting a hexagonal assembly into six triangular nodes and solved using cubic polynomial expansion for the scalar flux with nine-term expansion coefficients. The nodal diffusion calculation is further accelerated with the multilevel coarse-mesh finite difference method. The verification of the TriPEN-9 method on the VVER full-core problem is provided with the model based on the NURESIM (Nuclear Reactor Simulator)-SP1 V1000-2D-C1-tr benchmark problem. The Serpent Monte Carlo code is used as a reference solution for verification and to generate homogenized group-constants data for PARCS. Exact discontinuity factors were generated in GenPMAXS, a cross-section processing code, using a similar expansion method as the TriPEN-9 core solver method with the utilization of heterogeneous solutions from Serpent. Implementing the TriPEN-9 method in PARCS, this approach can exactly reproduce the solutions from the high-fidelity Serpent calculations.