ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Muhammad Rizki Oktavian, Oscar Lastres, Yuxuan Liu, Yunlin Xu
Nuclear Science and Engineering | Volume 196 | Number 6 | June 2022 | Pages 651-667
Technical Paper | doi.org/10.1080/00295639.2021.2017664
Articles are hosted by Taylor and Francis Online.
Due to the low computational cost, nodal diffusion methods are still commonly used to simulate full-core reactor problems. This work represents the developmental effort to build an accurate nodal kernel to treat hexagonal geometry in the core simulator code PARCS. An innovative method called TriPEN-9 has been developed by splitting a hexagonal assembly into six triangular nodes and solved using cubic polynomial expansion for the scalar flux with nine-term expansion coefficients. The nodal diffusion calculation is further accelerated with the multilevel coarse-mesh finite difference method. The verification of the TriPEN-9 method on the VVER full-core problem is provided with the model based on the NURESIM (Nuclear Reactor Simulator)-SP1 V1000-2D-C1-tr benchmark problem. The Serpent Monte Carlo code is used as a reference solution for verification and to generate homogenized group-constants data for PARCS. Exact discontinuity factors were generated in GenPMAXS, a cross-section processing code, using a similar expansion method as the TriPEN-9 core solver method with the utilization of heterogeneous solutions from Serpent. Implementing the TriPEN-9 method in PARCS, this approach can exactly reproduce the solutions from the high-fidelity Serpent calculations.