ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Mohammed Alqahtani, Adriaan Buijs, Meshari ALQahtani
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 614-622
Technical Paper | doi.org/10.1080/00295639.2021.2003651
Articles are hosted by Taylor and Francis Online.
Changes in the thermal power of a nuclear research reactor will lead to changes in experimental, irradiation, and testing conditions. Consequently, reactor core parameters are inevitably susceptible to changes. One such parameter is gamma heating (GH), which results from gamma interaction with materials. In this work, a gamma thermometer was used to measure GH over the course of 7 operational days and nights. In addition, the Monte Carlo reactor physics code Serpent-2 was used to evaluate the sensitivity of common detection methods for monitoring reactor core parameters such as neutron fluxes, GH, and gamma flux under the following conditions: reactor core power variation, reactor core fuel shuffling, and detector vicinity fuel assembly shuffling. The GH values obtained through measurements and calculations were linearly proportional to the reactor power. In addition, the Serpent-2 code for the McMaster nuclear reactor showed that despite maintaining the reactor power core at the same level, the fuel burnup distribution could alter the studied parameters.