ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Chao Fang, Liangzhi Cao, Hongchun Wu, Kang Li
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 526-543
Technical Paper | doi.org/10.1080/00295639.2021.2011667
Articles are hosted by Taylor and Francis Online.
This paper presents a stabilized finite element method (FEM) and a spherical harmonics method to discretize the space and angle of the Boltzmann transport equation. The FEM is based on the subgrid-scale (SGS) model, which decomposes the unknowns into resolvable scale and SGS with an approximation for the SGS and then embeds it into a resolvable scale formulation, which yields a stabilized variational formula with only a resolvable scale. In this method, the SGS is identified as the residual of the flux, which represents the indistinguishable high-frequency component. This method is characterized by a residual equation proposed on the subgrid, thus reflecting the relationship between the residual of the flux and the residual of the source. A simple assumption is proposed that the residual of the flux is the scaling of the residual of the source. The scaling parameter is identified as a stabilization parameter, and it takes the inverse of the norm of the transport operator. This method has been verified by various benchmark problems, and the numerical results show that it has high accuracy, stability, and void applicability.