ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Chao Fang, Liangzhi Cao, Hongchun Wu, Kang Li
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 526-543
Technical Paper | doi.org/10.1080/00295639.2021.2011667
Articles are hosted by Taylor and Francis Online.
This paper presents a stabilized finite element method (FEM) and a spherical harmonics method to discretize the space and angle of the Boltzmann transport equation. The FEM is based on the subgrid-scale (SGS) model, which decomposes the unknowns into resolvable scale and SGS with an approximation for the SGS and then embeds it into a resolvable scale formulation, which yields a stabilized variational formula with only a resolvable scale. In this method, the SGS is identified as the residual of the flux, which represents the indistinguishable high-frequency component. This method is characterized by a residual equation proposed on the subgrid, thus reflecting the relationship between the residual of the flux and the residual of the source. A simple assumption is proposed that the residual of the flux is the scaling of the residual of the source. The scaling parameter is identified as a stabilization parameter, and it takes the inverse of the norm of the transport operator. This method has been verified by various benchmark problems, and the numerical results show that it has high accuracy, stability, and void applicability.