ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Romain Vuiart, Mariya Brovchenko, Julien Taforeau, Vaibhav Jaiswal, Eric Dumonteil
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 455-477
Technical Paper | doi.org/10.1080/00295639.2021.1991761
Articles are hosted by Taylor and Francis Online.
The operation of many nuclear pressurized water reactors is being extended beyond their design lifetime threshold. From the perspective of possible further lifetime extension, satisfying safety requirements is a priority. Characterization of the structural integrity of the reactor pressure vessel (RPV) is an important issue as it is a guiding parameter that influences the reactor lifetime. Embrittlement of RPV material is primarily induced by the bombardment of fast neutrons (with energies greater than 1 MeV). Consequently, fast neutron fluence is one of the quantities used by safety authorities to characterize the structural integrity of RPV. However, future RPV aging assessments might lean on new variables with respect to current laws, such as neutron fluence considering the whole neutron spectrum or displacements per atom (dpa) since the latter is more representative of overall damage generated in the RPV. In order to meet these challenges, a versatile calculation scheme for RPV aging assessments is proposed in this paper. The developed methodology allows one to compute (fast and non-fast) neutron fluence as well as dpa rate, using the Norgett-Robinson-Torrens dpa model and the Athermal Recombination Corrected dpa model, for a wide azimuthal and axial range on the RPV and in the capsules of the aging monitoring program (which contain dosimeters and vessel material samples). This methodology is based on a coupling between deterministic (CASMO5 and SIMULATE5) and Monte Carlo (MCNP6) numerical approaches. First, the deterministic approach is used to evaluate the full-core fission neutron source term. Second, Monte Carlo modeling is used to perform the neutron attenuation from the core to sites of interest, such as the RPV. The computational efficiency, accuracy, and potential benefits of the methodology are presented. Moreover, the frequency at which neutron transport calculations should be performed in order to obtain sufficiently accurate time-integrated data over a reactor cycle is discussed. Finally, the validity of the fast neutron fluence as an indicator of RPV aging is compared against the use of dpa.