ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
H. Naik, R. J. Singh, W. Jang, S. P. Dange
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 433-454
Technical Paper | doi.org/10.1080/00295639.2021.1993425
Articles are hosted by Taylor and Francis Online.
In the thermal neutron–induced fission of 232U, cumulative and independent yields of various fission products within the mass ranges of 72 to 107 and 123 to 158 have been measured using an off-line gamma-ray spectrometric technique. The fission yields were determined relative to the yield of a monitor product 92Sr. Charge distribution correction was applied on the cumulative yields to obtain the post-neutron mass yield distribution. Mass yield distribution parameters such as full-width at tenth-maximum of light and heavy mass wings, average light mass number <AL> and heavy mass number <AH>, and average number of emitted neutrons <ν> were obtained. Data from the present and earlier work on the 232U(nth,f) reaction were compared with similar data of the 235U(nth,f) reaction. It was found that the mass chain yield distribution in the 232U(nth,f) reaction is asymmetric with two major humps as in the case of the 235U(nth,f) reaction. Besides this, in the 232U(nth,f) reaction, the mass yield distribution shows a small third hump for the symmetric fission products. It was also found that the standard II asymmetric mode of fission is favorable in the 232U(nth,f) reaction whereas the standard I asymmetric mode of fission is favorable in the 235U(nth,f) reaction.