ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Yoshiki Oshima, Tomohiro Endo, Akio Yamamoto
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 379-394
Technical Paper | doi.org/10.1080/00295639.2021.1982549
Articles are hosted by Taylor and Francis Online.
The convergence performance of nonlinear acceleration methods for the method of characteristics (MOC) with flat source (FS) approximation (FS MOC) or linear source (LS) approximation (LS MOC) is numerically investigated by focusing on the spatial and angular approximations in the acceleration calculations. The convergence of nonlinear acceleration depends on the consistency of the calculation models between the higher-order and lower-order (acceleration) methods. The convergence of four acceleration methods is evaluated to clarify the relationship between model consistency and convergence performance. These methods consist of FS or LS for the spatial source distribution and P1 or discrete angle for the angular distribution, i.e., (1) FS analytic coarse mesh finite difference (ACMFD) acceleration (FS ACMFD), (2) LS ACMFD, (3) FS angular-dependent discontinuity factor MOC (ADMOC) acceleration (FS ADMOC), and (4) LS ADMOC. The ACMFD and ADMOC accelerations are based on P1 and discrete angle approximations, respectively. The FS MOC and LS MOC are considered higher-order methods. The FS MOC and LS MOC with five acceleration methods, i.e., the aforementioned four acceleration methods and the conventional coarse mesh finite difference acceleration method, are used to perform fixed-source calculations in one-group one-dimensional homogeneous slab geometry, and the spectral radii are numerically evaluated. The numerical results indicate that (1) the nonlinear acceleration methods that are unconditionally stable for FS MOC also show similar convergence properties for LS MOC in one-dimensional slab geometry; (2) better convergence is observed when the consistency of higher- and lower-order models is high; and (3) when a coarse mesh is optically thick, the spatial homogenization degrades the convergence performance, even if spatial and angular approximations are consistent between the higher- and lower-order models.