ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Abd El Rahman Mahmoud, Aya Diab
Nuclear Science and Engineering | Volume 196 | Number 3 | March 2022 | Pages 342-361
Technical Note | doi.org/10.1080/00295639.2021.1975479
Articles are hosted by Taylor and Francis Online.
The power manuverability of nuclear power plants (NPPs) is becoming more and more important as governments expand the deployment of renewable energy resources in their energy mix. For this purpose, load follow (LF) operation (LFO) schemes are introduced and tested for different types of reactors. Currently, all NPPs in Korea are operated at a baseload, that is, 100% rated power, and do not rely largely on power tracking control except for startup, shutdown, and some anticipated transients without scram. However, as the contribution of NPPs in the total electricity generation exceeds 50%, LFO may be necessary to balance the intermittency of renewable energy resources. However, the execution of LF can be challenging due to the complex interaction of the nuclear system parameters. Therefore, MODE-K was proposed to investigate the feasibility of LFO for OPR1000 and APR1400. Although MODE-K has shown good results in controlling reactor power and core reactivity, analysis has focused on neutronics aspects only and neglected plant response. A multiphysics LF simulation is therefore undertaken in this work using the multiphysics package RELAP5/SCDAPSIM/MOD3.4/3DKIN to accurately represent the impact of the underlying feedback mechanisms on APR1400 system performance. The simulation uses the three-dimensional neutron kinetics module (3DKIN) to model the reactor core by defining up to eight different control rod banks. Compared to the point-kinetics model of the Reactor Excursion and Leak Analysis Program (RELAP5), the use of 3DKIN yields a more realistic simulation by representing the entire core and reflecting the control rod motion in real time without assumptions related to the axial and radial power distributions, or burnup state.