ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
A. Marrel, B. Iooss, V. Chabridon
Nuclear Science and Engineering | Volume 196 | Number 3 | March 2022 | Pages 301-321
Technical Paper | doi.org/10.1080/00295639.2021.1980362
Articles are hosted by Taylor and Francis Online.
In the framework of risk assessment in nuclear accident analysis, best-estimate computer codes associated with probabilistic modeling of uncertain input variables are used to estimate safety margins. Often, a first step in such uncertainty quantification studies is to identify the critical configurations (or penalizing, in the sense of a prescribed safety margin) of several input parameters (called scenario inputs) under the uncertainty of the other input parameters. However, the large CPU-time cost of most of the computer codes used in nuclear engineering, as the ones related to thermal-hydraulic accident scenario simulations, involves developing highly efficient strategies. This work focuses on machine learning algorithms by way of a metamodel-based approach (i.e., a mathematical model that is fitted on a small sample of simulations). To achieve it with a very large number of inputs, a specific and original methodology called Identification of penalizing Configurations using SCREening And Metamodel (ICSCREAM) is proposed. The screening of influential inputs is based on an advanced global sensitivity analysis tool (Hilbert-Schmidt Independence Criterion importance measures). A Gaussian process metamodel is then sequentially built and used to estimate within a Bayesian framework the conditional probabilities of exceeding a high-level threshold according to the scenario inputs. The efficiency of this methodology is illustrated with two high-dimensional (around a hundred inputs) thermal-hydraulic industrial cases simulating an accident of primary coolant loss in a pressurized water reactor. For both use cases, the study focuses on the peak cladding temperature (PCT), and critical configurations are defined by exceeding the 90%-quantile of the PCT. In both cases, using only around one thousand code simulations, the ICSCREAM methodology allows one to estimate the impact of the scenario inputs and their critical areas of values.