ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Linjun Xie, Changxun Wang, Wei Zhang, Xin Shen, Minglei Hu, Chunhua Bian, Yilun Xu
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 221-233
Technical Note | doi.org/10.1080/00295639.2021.1964325
Articles are hosted by Taylor and Francis Online.
Nuclear power pipeline ice plug technology, as the main technical method of nuclear power safety maintenance and innovative design, plays a protective role in the long-term safe operation of nuclear power plants. During the ice plug process, pipelines have complex stress states, which can easily lead to problems such as material yielding, cracking, and even damage. In this study, by building an ice plug test platform for nuclear power pipelines, an ice plug test and a numerical analysis of nuclear power pipelines are carried out to explore the stress distribution of nuclear power pipelines during the ice plug process and its impact on the performance of pipeline materials and to analyze the safety of pipelines in the ice plug process. This study shows that the distribution of stress in the pipeline during ice plug is related to the temperature change and cooling rate of the pipe wall. The stress distribution in different parts is uneven, and the maximum stress appears near the edge of the jacket. According to the temperature data of the pipe wall, the stress distribution of the pipe wall can be obtained by the finite element method. From the test and finite element results, it can be seen that when the frost line length of the pipeline is less than 200 mm, the pipeline ice plug method is safe and feasible.