ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 144-160
Technical Paper | doi.org/10.1080/00295639.2021.1968224
Articles are hosted by Taylor and Francis Online.
Methods for approximately accounting for the terms neglected in a finite (L’th-order) Legendre expansion of the scattering source in the transport equation are called transport corrections. This paper derives adjoint-based sensitivities of a neutron or gamma-ray transport response for problems that use diagonal, Bell-Hansen-Sandmeier (BHS), or n’th-Cesàro-mean-of-order-2 (Cesàro) transport corrections in the discrete-ordinates method. For diagonal and BHS transport corrections, there is a sensitivity to the L + 1ʹth scattering cross-section moment, and the sensitivity to nuclide and material densities requires this contribution. For the Cesàro transport correction, the sensitivities to the scattering cross section for the l’th moment are multiplied by a simple function of l and the scattering expansion order L. Numerical results for a keff problem and a fixed-source problem verify the derivation and implementation of the sensitivity equations into the SENSMG multigroup sensitivity code. The Cesàro transport correction yields inaccurate responses for both problems.