ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 144-160
Technical Paper | doi.org/10.1080/00295639.2021.1968224
Articles are hosted by Taylor and Francis Online.
Methods for approximately accounting for the terms neglected in a finite (L’th-order) Legendre expansion of the scattering source in the transport equation are called transport corrections. This paper derives adjoint-based sensitivities of a neutron or gamma-ray transport response for problems that use diagonal, Bell-Hansen-Sandmeier (BHS), or n’th-Cesàro-mean-of-order-2 (Cesàro) transport corrections in the discrete-ordinates method. For diagonal and BHS transport corrections, there is a sensitivity to the L + 1ʹth scattering cross-section moment, and the sensitivity to nuclide and material densities requires this contribution. For the Cesàro transport correction, the sensitivities to the scattering cross section for the l’th moment are multiplied by a simple function of l and the scattering expansion order L. Numerical results for a keff problem and a fixed-source problem verify the derivation and implementation of the sensitivity equations into the SENSMG multigroup sensitivity code. The Cesàro transport correction yields inaccurate responses for both problems.