ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 144-160
Technical Paper | doi.org/10.1080/00295639.2021.1968224
Articles are hosted by Taylor and Francis Online.
Methods for approximately accounting for the terms neglected in a finite (L’th-order) Legendre expansion of the scattering source in the transport equation are called transport corrections. This paper derives adjoint-based sensitivities of a neutron or gamma-ray transport response for problems that use diagonal, Bell-Hansen-Sandmeier (BHS), or n’th-Cesàro-mean-of-order-2 (Cesàro) transport corrections in the discrete-ordinates method. For diagonal and BHS transport corrections, there is a sensitivity to the L + 1ʹth scattering cross-section moment, and the sensitivity to nuclide and material densities requires this contribution. For the Cesàro transport correction, the sensitivities to the scattering cross section for the l’th moment are multiplied by a simple function of l and the scattering expansion order L. Numerical results for a keff problem and a fixed-source problem verify the derivation and implementation of the sensitivity equations into the SENSMG multigroup sensitivity code. The Cesàro transport correction yields inaccurate responses for both problems.