ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Joseph A. Christensen, R. A. Borrelli
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 98-108
Technical Paper | doi.org/10.1080/00295639.2021.1940066
Articles are hosted by Taylor and Francis Online.
Algorithms used to generate Monte Carlo input decks and to analyze the output over a range of uranium mass, water volume, and particle size in a regular lattice are described. The algorithms produce input decks for both homogeneous and heterogeneous, regular-lattice systems of 20% enriched uranium metal and water and then analyze the results to determine the minimum critical mass over a range of input mass and particle size. The output is presented and analyzed for a 20% enriched uranium metal and water system, and comparisons to existing technical reports and safety guides are discussed. Two particular existing recommendations are tested and compared with new results: the boundary between a homogeneous system and a heterogeneous system, and the recommended margins of safety that can be applied to account for the effects of heterogeneity.