ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Joseph A. Christensen, R. A. Borrelli
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 98-108
Technical Paper | doi.org/10.1080/00295639.2021.1940066
Articles are hosted by Taylor and Francis Online.
Algorithms used to generate Monte Carlo input decks and to analyze the output over a range of uranium mass, water volume, and particle size in a regular lattice are described. The algorithms produce input decks for both homogeneous and heterogeneous, regular-lattice systems of 20% enriched uranium metal and water and then analyze the results to determine the minimum critical mass over a range of input mass and particle size. The output is presented and analyzed for a 20% enriched uranium metal and water system, and comparisons to existing technical reports and safety guides are discussed. Two particular existing recommendations are tested and compared with new results: the boundary between a homogeneous system and a heterogeneous system, and the recommended margins of safety that can be applied to account for the effects of heterogeneity.