ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Dean Wang, Tseelmaa Byambaakhuu
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1347-1358
Technical Note | doi.org/10.1080/00295639.2021.1924048
Articles are hosted by Taylor and Francis Online.
It has been well known that the analytic neutron transport solution tends to the analytic solution of a diffusion problem for optically thick systems with small absorption and source. The standard technique for proving the asymptotic diffusion limit is constructing an asymptotic power series of the neutron angular flux in small positive parameter , which is the ratio of a typical mean free path of a particle to a typical dimension of the problem domain. In this paper, first, we provide an analysis of the asymptotic properties of the SN transport eigenvalues. Then, we show that the analytical SN transport solution satisfies the diffusion equation in the asymptotic diffusion limit based on a recently obtained closed-form analytical solution to the one-dimensional monoenergetic SN neutron transport equation. The boundary conditions for the diffusion equation are discussed.