ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Ezequiel Goldberg, Alejandro Soba
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1291-1306
Technical Paper | doi.org/10.1080/00295639.2021.1918939
Articles are hosted by Taylor and Francis Online.
Various numerical models are developed that seek to reproduce, in a simulation instance, the formation and evolution of cracks in the claddings of nuclear fuel elements. The algorithms are based on the cohesive zone method within the finite element framework. When applied to simulations involving fracture mechanics, cohesive elements have various advantages, such as not needing to know the stress state in advance, representing the nucleation of the crack, and being able to reproduce the contact between the crack surfaces after fracture, with numerous application examples for ductile materials, including metals. The models developed were included in the DIONISIO 3.0 nuclear fuel code and compared with analytical test cases, controlled tests of nuclear materials, and a large set of experimental exercises with rods subjected to steep power ramps where breakages are caused due to contact with the pellets. Similarly, these new models were used in controlled experiments where the conditions of an accident type such as a loss-of-coolant accident are reproduced, analyzing the variation of the thermohydraulic, thermomechanical, and structural parameters of a rod.