ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Rei Kimura, Yuki Nakai, Satoshi Wada
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1279-1290
Technical Paper | doi.org/10.1080/00295639.2021.1908081
Articles are hosted by Taylor and Francis Online.
A novel ex-core-detector–based core power reconstruction method is presented. The method uses power correlations between fuel regions and can be applied to a real-time small reactor core monitoring system especially for the detection of abnormal behavior. The use of ex-core detectors reduces the installation and maintenance costs of small modular reactors (SMRs) compared to conventional in-core detectors. To construct the power distribution with ex-core-detector count rates, it is necessary to account for the scattering and absorption reactions of neutrons within the core that make it difficult to extract information directly from the central core region. In the proposed method, detector responses and power correlations are preevaluated and revised by mathematical transformation. Monte Carlo simulations using the realistic SMR core design MoveluXTM demonstrated that the present method is capable of reconstructing the core power distributions within an average error of 10% using the count rates of the ex-core detectors. Also, the reconstruction successfully identified the position of abnormal power peaks in the central core region and an unbalanced power distribution.