ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Pavel A. Grechanuk, Michael E. Rising, Todd S. Palmer
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1265-1278
Technical Paper | doi.org/10.1080/00295639.2021.1935102
Articles are hosted by Taylor and Francis Online.
In this work, we aim to show that machine learning algorithms are promising tools for the identification of nuclear data that contribute to increased errors in transport simulations. We demonstrate this through an application of a machine learning algorithm (Random Forest) to the Whisper/MCNP6 criticality validation library to identify nuclear data that are associated with an increase of the bias (simulated-experimental ) in the calculations. Specifically, the sensitivity profiles (with respect to nuclear data) of solution benchmarks are used to predict the bias, and SHapley Additive exPlanations (SHAP) are used to explain how the sensitivities are related to the predicted bias. The SHAP values can be interpreted as sensitivity coefficients of the machine learning model to the sensitivities that are used to make predictions of bias. Using the SHAP values, we can identify specific subsets of nuclear data that have the highest probability of influencing bias. We demonstrate the utility of this method by showing how SHAP values were used to identify an inconsistency in the inelastic scattering nuclear data. The methodology presented here is not limited to transport problems and can be applied to other simulations if there are experimental measurements to compare against, simulations of those experimental measurements, and the ability to calculate sensitivities of the model output with respect to the data inputs.