ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Pavel A. Grechanuk, Michael E. Rising, Todd S. Palmer
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1265-1278
Technical Paper | doi.org/10.1080/00295639.2021.1935102
Articles are hosted by Taylor and Francis Online.
In this work, we aim to show that machine learning algorithms are promising tools for the identification of nuclear data that contribute to increased errors in transport simulations. We demonstrate this through an application of a machine learning algorithm (Random Forest) to the Whisper/MCNP6 criticality validation library to identify nuclear data that are associated with an increase of the bias (simulated-experimental ) in the calculations. Specifically, the sensitivity profiles (with respect to nuclear data) of solution benchmarks are used to predict the bias, and SHapley Additive exPlanations (SHAP) are used to explain how the sensitivities are related to the predicted bias. The SHAP values can be interpreted as sensitivity coefficients of the machine learning model to the sensitivities that are used to make predictions of bias. Using the SHAP values, we can identify specific subsets of nuclear data that have the highest probability of influencing bias. We demonstrate the utility of this method by showing how SHAP values were used to identify an inconsistency in the inelastic scattering nuclear data. The methodology presented here is not limited to transport problems and can be applied to other simulations if there are experimental measurements to compare against, simulations of those experimental measurements, and the ability to calculate sensitivities of the model output with respect to the data inputs.