ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Pavel A. Grechanuk, Michael E. Rising, Todd S. Palmer
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1265-1278
Technical Paper | doi.org/10.1080/00295639.2021.1935102
Articles are hosted by Taylor and Francis Online.
In this work, we aim to show that machine learning algorithms are promising tools for the identification of nuclear data that contribute to increased errors in transport simulations. We demonstrate this through an application of a machine learning algorithm (Random Forest) to the Whisper/MCNP6 criticality validation library to identify nuclear data that are associated with an increase of the bias (simulated-experimental ) in the calculations. Specifically, the sensitivity profiles (with respect to nuclear data) of solution benchmarks are used to predict the bias, and SHapley Additive exPlanations (SHAP) are used to explain how the sensitivities are related to the predicted bias. The SHAP values can be interpreted as sensitivity coefficients of the machine learning model to the sensitivities that are used to make predictions of bias. Using the SHAP values, we can identify specific subsets of nuclear data that have the highest probability of influencing bias. We demonstrate the utility of this method by showing how SHAP values were used to identify an inconsistency in the inelastic scattering nuclear data. The methodology presented here is not limited to transport problems and can be applied to other simulations if there are experimental measurements to compare against, simulations of those experimental measurements, and the ability to calculate sensitivities of the model output with respect to the data inputs.