ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Hiroki Takezawa, Delgersaikhan Tuya, Toru Obara
Nuclear Science and Engineering | Volume 195 | Number 11 | November 2021 | Pages 1236-1246
Technical Note | doi.org/10.1080/00295639.2021.1920797
Articles are hosted by Taylor and Francis Online.
This study introduces new methodologies for integrating fission reactions induced by delayed neutrons into the Multi-Region Integral Kinetic (MIK) code by using a Monte Carlo neutron transport calculation. First, it was confirmed that it is feasible to solve the Integral Kinetic Model (IKM) with delayed neutrons by the forward Euler discretization method in terms of the number of time steps. This can be done with the help of the law of radioactive decay to reflect the delay in the emission of delayed neutrons in the discretized IKM. Second, a new Monte Carlo–based methodology was introduced for calculating the cumulative distribution functions of secondary fission induced by prompt and delayed neutrons. These functions are necessary for the discretized IKM. The results of preliminary verification using the Godiva reactor confirmed the applicability of the new Monte Carlo–based methodology. A new MIK code that has the capability of calculating the fission reaction rates for delayed neutrons is currently under development. Based on the preliminary verification results, future studies will verify the discretized IKM with delayed neutrons using kinetic analyses and compare them to experimental results for prompt and delayed supercritical transients in diverse reactor configurations.