ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Daniel M. Nichols, Michael A. Reichenberger, Andrew D. Maile, Mary R. Holtz, Douglas S. McGregor
Nuclear Science and Engineering | Volume 195 | Number 10 | October 2021 | Pages 1098-1106
Technical Paper | doi.org/10.1080/00295639.2021.1898922
Articles are hosted by Taylor and Francis Online.
The Micro-Pocket Fission Detector (MPFD) is a small-form-factor real-time fission chamber. MPFD performance has been simulated in the Advanced Test Reactor Critical Facility located at Idaho National Laboratory. The neutron and gamma-ray flux profiles and magnitudes were simulated using MCNP in the near-core B-8 irradiation position. These simulations were performed at 69 discrete axial locations inside the B-8 position 55 for three separate orientations of the nearby hafnium outer shim control cylinders and at a power level of 700 W(thermal). The resulting neutron and gamma-ray flux values were used to determine the MPFD response for various fissile masses and detector gas pressures. The optimal gas-operating pressure was determined to be between 30 and 60 psig. The required fissile layer mass was determined to be between 0.5 to 1.0 µg of 235U. Additionally, the gamma ray to fission fragment interaction rate was determined to be 1.43 × 103 with average energy deposition for gamma rays and fission fragments in 30 psig argon gas to be 1 keV and 3.5 MeV, respectively.