ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Krishna Chetty, Subash Sharma, John Buchanan, Martin Lopez-de-Bertodano
Nuclear Science and Engineering | Volume 195 | Number 10 | October 2021 | Pages 1087-1097
Technical Paper | doi.org/10.1080/00295639.2021.1898920
Articles are hosted by Taylor and Francis Online.
A new dynamic verification of the one-dimensional (1-D) computational Two-Fluid Model (TFM) using the Type II density wave instability (DWI) theory of Ishii is presented. Verification requires convergence in the sense of the Lax Equivalence Theorem and dynamic comparison with the DWI theory. Rigorous verification of the computational TFM must be performed with a computational model that is well posed without regularization because, otherwise, since the theory of Ishii is well posed, regularization would make the TFM incompatible with it.
Furthermore, since the TFM is well posed, it was possible to implement a second-order numerical method with a flux limiter that, together with a fine mesh, achieves numerical convergence. This is significant because numerical convergence and consistency, both of which are demonstrated, are prerequisites for the rigorous dynamic verification according to the Lax Equivalence Theorem. Thus, the apparent but previously unproven numerical verification of the 1-D TFM to simulate the two-phase long wave DWI instability is hereby performed.