ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Krishna Chetty, Subash Sharma, John Buchanan, Martin Lopez-de-Bertodano
Nuclear Science and Engineering | Volume 195 | Number 10 | October 2021 | Pages 1087-1097
Technical Paper | doi.org/10.1080/00295639.2021.1898920
Articles are hosted by Taylor and Francis Online.
A new dynamic verification of the one-dimensional (1-D) computational Two-Fluid Model (TFM) using the Type II density wave instability (DWI) theory of Ishii is presented. Verification requires convergence in the sense of the Lax Equivalence Theorem and dynamic comparison with the DWI theory. Rigorous verification of the computational TFM must be performed with a computational model that is well posed without regularization because, otherwise, since the theory of Ishii is well posed, regularization would make the TFM incompatible with it.
Furthermore, since the TFM is well posed, it was possible to implement a second-order numerical method with a flux limiter that, together with a fine mesh, achieves numerical convergence. This is significant because numerical convergence and consistency, both of which are demonstrated, are prerequisites for the rigorous dynamic verification according to the Lax Equivalence Theorem. Thus, the apparent but previously unproven numerical verification of the 1-D TFM to simulate the two-phase long wave DWI instability is hereby performed.