ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Krishna Chetty, Subash Sharma, John Buchanan, Martin Lopez-de-Bertodano
Nuclear Science and Engineering | Volume 195 | Number 10 | October 2021 | Pages 1087-1097
Technical Paper | doi.org/10.1080/00295639.2021.1898920
Articles are hosted by Taylor and Francis Online.
A new dynamic verification of the one-dimensional (1-D) computational Two-Fluid Model (TFM) using the Type II density wave instability (DWI) theory of Ishii is presented. Verification requires convergence in the sense of the Lax Equivalence Theorem and dynamic comparison with the DWI theory. Rigorous verification of the computational TFM must be performed with a computational model that is well posed without regularization because, otherwise, since the theory of Ishii is well posed, regularization would make the TFM incompatible with it.
Furthermore, since the TFM is well posed, it was possible to implement a second-order numerical method with a flux limiter that, together with a fine mesh, achieves numerical convergence. This is significant because numerical convergence and consistency, both of which are demonstrated, are prerequisites for the rigorous dynamic verification according to the Lax Equivalence Theorem. Thus, the apparent but previously unproven numerical verification of the 1-D TFM to simulate the two-phase long wave DWI instability is hereby performed.