ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Dylan S. Hoagland, Raffi A. Yessayan, Yousry Y. Azmy
Nuclear Science and Engineering | Volume 195 | Number 10 | October 2021 | Pages 1036-1064
Technical Paper | doi.org/10.1080/00295639.2021.1898309
Articles are hosted by Taylor and Francis Online.
The Parallel Block Jacobi (PBJ) spatial domain decomposition is well suited for implementation on massively parallel computers to solve the neutron transport equation on unstructured grids due to the simple scheduling policy that arises from the PBJ’s iterative asynchronicity. The Parallel Block Jacobi-Integral Transport Matrix Method (PBJ-ITMM) is an iterative method that utilizes the PBJ decomposition and resolves local within-group scattering in a single iteration, but requires a matrix-vector iterative solution. This work details the development, implementation, and testing of the novel Green’s Function ITMM Construction (GFIC) algorithm. The GFIC constructs the matrices required for the PBJ-ITMM’s iterative solution on unstructured grids, utilizing the physical interpretation of these matrices as discretized response functions to create a local problem with a Green’s Function–like source. Conducting a set of mesh sweeps over all angles on this local problem yields the ITMM matrix elements. On unstructured grids, this approach utilizes the kernel calculation and fundamental solution algorithm present in an existing transport code, thus avoiding reimplementation of code functionality. Using the GFIC, the PBJ-ITMM is implemented in THOR, a tetrahedral mesh transport code, along with the Inexact Parallel Block Jacobi (IPBJ) method for performance comparison. This comparison involves strong and weak scaling studies of the Godiva and C5G7 benchmark problems using up to 32 768 processors. These studies establish that the PBJ-ITMM executes faster than the IPBJ when the number of cells per subdomain falls below a problem-dependent threshold, ~128 cells for Godiva, >256 cells for C5G7. The largest problem tested, comprising more than 6.8 billion unknowns, solves in <30 min with the IPBJ and <20 min with the PBJ-ITMM, using 32 768 processors. These results demonstrate the PBJ-ITMM as a viable approach for solving neutron transport problems on unstructured grids using massively parallel computers. Additionally, this study illustrates the range of number of cells per subdomain over which this method is favorable.