ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
After decades, Hanford’s WTP begins vitrifying tank waste
The Department of Energy’s Office of Environmental Management and its contractor Bechtel announced on October 15 the start of nuclear vitrification operations at the Waste Treatment and Immobilization Plant (WTP), also known as the Vit Plant, at the Hanford Site in Washington state.
Mohamed Elsafi, Jamila S. Alzahrani, Mahmoud I. Abbas, Mona M. Gouda, Abouzeid A. Thabet, Mohamed S. Badawi, Ahmed M. El-Khatib
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 1008-1016
Technical Note | doi.org/10.1080/00295639.2021.1895406
Articles are hosted by Taylor and Francis Online.
The optimization of measurement of environmental samples is achieved by putting the sample closer to the detector to increase the full-energy peak efficiency, which leads to decrease of the detection limit. The present work inspects the utilization of Geant4 simulation for a NaI cubic scintillation detector with a cavity using two tracks. The radionuclide option includes coincidence summing, and the monoenergetic option is summing free coincidence. The ratio between the monoenergetic to redionuclide options gives the coincidence summing correction factors. In the experiments a gamma-ray aqueous source containing the radionuclide 152Eu covering the range from 121 to 1408 keV was used. Comparing the monoenergetic option for calculating the full-energy peak efficiency and the corrected experimental efficiency, the values are in agreement.