ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Canada begins regulatory approval process for spent fuel repository
Canada has formally initiated the regulatory process of licensing its proposed deep geological repository for spent nuclear fuel, with the country’s Nuclear Waste Management Organization (NWMO) announcing that it has submitted an initial project description to the Canadian government.
According to the NWMO, the initial project description is a foundational document, detailing the repository’s purpose, need, and expected benefits and explaining how the project will be implemented. It also provides a preliminary assessment of potential impacts and describes measures to avoid or mitigate them. The NWMO is the not-for-profit organization responsible for managing Canada’s nuclear waste.
Stephen N. Gilliam, Jamie B. Coble, Steven E. Skutnik
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 965-976
Technical Paper | doi.org/10.1080/00295639.2021.1883399
Articles are hosted by Taylor and Francis Online.
In this paper, we investigate the possibility of plutonium quantification within the electrorefiner vessel of an electrochemical separation facility via the use of the (α,n) neutron signature from dissolved actinides. As a potential alternative means to traditional spontaneous fission tracking, such an analysis may provide a more reliable tracking capability of plutonium within systems that produce a mixed matrix sample that yields a large (α,n) source term relative to that of spontaneous fission. This assessment includes an evaluation and breakdown of nuclides within the refining unit to differentiate the source of neutrons and then the ratio between (α,n) emissions to total neutron emissions given a range of fuel parameters. Next, we provide an assessment of the origin of (α,n) neutrons in relation to multiple isotopes of plutonium to determine the potential of a direct tracking method. Preliminary results indicate that the (α,n) contribution for electrochemical systems is much higher than in its aqueous counterpart and rivals spontaneous fission yield in terms of magnitude. Furthermore, 238Pu is shown to be a main contributor to the (α,n) yield for the fuel examined in this study.