ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Stephen N. Gilliam, Jamie B. Coble, Steven E. Skutnik
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 965-976
Technical Paper | doi.org/10.1080/00295639.2021.1883399
Articles are hosted by Taylor and Francis Online.
In this paper, we investigate the possibility of plutonium quantification within the electrorefiner vessel of an electrochemical separation facility via the use of the (α,n) neutron signature from dissolved actinides. As a potential alternative means to traditional spontaneous fission tracking, such an analysis may provide a more reliable tracking capability of plutonium within systems that produce a mixed matrix sample that yields a large (α,n) source term relative to that of spontaneous fission. This assessment includes an evaluation and breakdown of nuclides within the refining unit to differentiate the source of neutrons and then the ratio between (α,n) emissions to total neutron emissions given a range of fuel parameters. Next, we provide an assessment of the origin of (α,n) neutrons in relation to multiple isotopes of plutonium to determine the potential of a direct tracking method. Preliminary results indicate that the (α,n) contribution for electrochemical systems is much higher than in its aqueous counterpart and rivals spontaneous fission yield in terms of magnitude. Furthermore, 238Pu is shown to be a main contributor to the (α,n) yield for the fuel examined in this study.