ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Namjae Choi, Han Gyu Joo
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 954-964
Technical Paper | doi.org/10.1080/00295639.2021.1887701
Articles are hosted by Taylor and Francis Online.
A target velocity sampling method named the Relative Speed Tabulation (RST) is proposed for the efficient treatment of resonance elastic scattering in the Monte Carlo simulation utilizing graphics processing units (GPU). The RST method samples the relative speed between a neutron and a target nucleus by employing pretabulated probabilities of relative speeds. The target velocity is then determined from the sampled relative velocity and the neutron speed. The motivation was to avoid the rejection process of the Doppler Broadening Rejection Correction (DBRC) method, which can incur a significant reduction in the parallel performance of vector processors, such as GPUs, due to its largely varying rejection rates. The RST can also overcome the weakness of large variance of the Weight Correction Method (WCM), which would involve drastic changes in neutron weights. The verification results obtained for the Mosteller benchmark problems demonstrate that the RST is equivalent to the DBRC in accuracy, while the calculation speed remains at the same level of the WCM.