ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Namjae Choi, Han Gyu Joo
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 954-964
Technical Paper | doi.org/10.1080/00295639.2021.1887701
Articles are hosted by Taylor and Francis Online.
A target velocity sampling method named the Relative Speed Tabulation (RST) is proposed for the efficient treatment of resonance elastic scattering in the Monte Carlo simulation utilizing graphics processing units (GPU). The RST method samples the relative speed between a neutron and a target nucleus by employing pretabulated probabilities of relative speeds. The target velocity is then determined from the sampled relative velocity and the neutron speed. The motivation was to avoid the rejection process of the Doppler Broadening Rejection Correction (DBRC) method, which can incur a significant reduction in the parallel performance of vector processors, such as GPUs, due to its largely varying rejection rates. The RST can also overcome the weakness of large variance of the Weight Correction Method (WCM), which would involve drastic changes in neutron weights. The verification results obtained for the Mosteller benchmark problems demonstrate that the RST is equivalent to the DBRC in accuracy, while the calculation speed remains at the same level of the WCM.