ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Bin Zhang, Jian Deng, Maolin Jing, Tao Xu, Xiaowei Jiang, Jianqiang Shan
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 853-863
Technical Paper | doi.org/10.1080/00295639.2020.1861862
Articles are hosted by Taylor and Francis Online.
The suppression pool is an important component in a boiling water reactor nuclear power plant. Under design-basis, loss-of-coolant accident conditions, pressure in the containment increases. Gas flows from the drywell to the wetwell after the normally submerged connecting vents between the drywell and the wetwell have been purged of water through a vent clearing process so that the suppression pool may prevent pressure in the containment from exceeding the designed pressure limit. To analyze such complicated thermal-hydraulic behavior of the suppression pool under a specific accident, an advanced reasonable model should be developed. The SPARC-90 model used in MELCOR calculates the mass and energy transfer between the bubbles of the injected gas and the suppression pool, which is affected by distance efficiency and subcooling efficiency. The dedicated vent flow model used in CONTAIN can well simulate the vent clearing time, that is, the time required for the liquid level on either side of the suppression pool to drop to the level at which the vent begins to clear. However, it is necessary and better to combine them into one integrated code. This paper presents a newly developed suppression pool model based on the self-developed severe accident analysis code Integrated Severe Accident Analysis (ISAA), which combines the advantages of the dedicated vent flow model and the SPARC-90 model to analyze the suppression pool’s thermal-hydraulic behavior. The simulation results of the developed suppression pool model shows reasonableness compared with the result in the CONTAIN 2.0 code manual. The good agreement between the simulation results and the analysis results from the COLUMBIA power station final safety analysis report demonstrates the rationality and effectiveness of the developed model, although future improvement is needed.