ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Bin Zhang, Jian Deng, Maolin Jing, Tao Xu, Xiaowei Jiang, Jianqiang Shan
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 853-863
Technical Paper | doi.org/10.1080/00295639.2020.1861862
Articles are hosted by Taylor and Francis Online.
The suppression pool is an important component in a boiling water reactor nuclear power plant. Under design-basis, loss-of-coolant accident conditions, pressure in the containment increases. Gas flows from the drywell to the wetwell after the normally submerged connecting vents between the drywell and the wetwell have been purged of water through a vent clearing process so that the suppression pool may prevent pressure in the containment from exceeding the designed pressure limit. To analyze such complicated thermal-hydraulic behavior of the suppression pool under a specific accident, an advanced reasonable model should be developed. The SPARC-90 model used in MELCOR calculates the mass and energy transfer between the bubbles of the injected gas and the suppression pool, which is affected by distance efficiency and subcooling efficiency. The dedicated vent flow model used in CONTAIN can well simulate the vent clearing time, that is, the time required for the liquid level on either side of the suppression pool to drop to the level at which the vent begins to clear. However, it is necessary and better to combine them into one integrated code. This paper presents a newly developed suppression pool model based on the self-developed severe accident analysis code Integrated Severe Accident Analysis (ISAA), which combines the advantages of the dedicated vent flow model and the SPARC-90 model to analyze the suppression pool’s thermal-hydraulic behavior. The simulation results of the developed suppression pool model shows reasonableness compared with the result in the CONTAIN 2.0 code manual. The good agreement between the simulation results and the analysis results from the COLUMBIA power station final safety analysis report demonstrates the rationality and effectiveness of the developed model, although future improvement is needed.