ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bing Tan, W. X. Tian, R. H. Chen, S. Z. Qiu, G. H. Su
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 838-852
Technical Paper | doi.org/10.1080/00295639.2021.1878780
Articles are hosted by Taylor and Francis Online.
Aiming at studying the condensate flow phenomenon and air-steam–mixture condensation heat transfer underneath a containment vessel surface, a test bench was constructed. The plate dimension was 1.5 × 0.6 m, with Carbozinc 11 coating on the surface, suspended in a pressure vessel with 2.5-m diameter and 4.5-m height. The air-steam mixture was condensed on an inclined plate through natural convection mode and jet mode. By observing flow behavior on the plate through a viewport, four basic regimes were obtained as the inclination angle gradually increased: droplet, droplet to rivulet transition, developed rivulet, and uniform film. During the experiment, we observed a steam atomization phenomenon; therefore, the model predicted better with the atomization effect considered. A simple formula from the condensation data is proposed when the air mole fraction is small. The error between the experimental results and the predicted data is within 25%.