ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Bing Tan, W. X. Tian, R. H. Chen, S. Z. Qiu, G. H. Su
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 838-852
Technical Paper | doi.org/10.1080/00295639.2021.1878780
Articles are hosted by Taylor and Francis Online.
Aiming at studying the condensate flow phenomenon and air-steam–mixture condensation heat transfer underneath a containment vessel surface, a test bench was constructed. The plate dimension was 1.5 × 0.6 m, with Carbozinc 11 coating on the surface, suspended in a pressure vessel with 2.5-m diameter and 4.5-m height. The air-steam mixture was condensed on an inclined plate through natural convection mode and jet mode. By observing flow behavior on the plate through a viewport, four basic regimes were obtained as the inclination angle gradually increased: droplet, droplet to rivulet transition, developed rivulet, and uniform film. During the experiment, we observed a steam atomization phenomenon; therefore, the model predicted better with the atomization effect considered. A simple formula from the condensation data is proposed when the air mole fraction is small. The error between the experimental results and the predicted data is within 25%.