ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Dan Shen, Germina Ilas, Jeffrey J. Powers, Massimiliano Fratoni
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 825-837
Technical Paper | doi.org/10.1080/00295639.2021.1880850
Articles are hosted by Taylor and Francis Online.
The deployment of molten salt reactors requires validation of the computational tools used to support the licensing process. The Molten Salt Reactor Experiment (MSRE), built and operated in the 1960s, offers a unique inventory of experimental data for reactor physics benchmarks. The first benchmark based on the MSRE appeared in “The 2019 Edition of the IRPhEP [International Reactor Physics Experiment Evaluation Project] Handbook.” The benchmark refers to the first criticality experiment at zero power, stationary salt, and uniform temperature with 235U fuel. Simulations carried out for the developed benchmark model with the Monte Carlo code Serpent and ENDF/B-VII.1 cross-section library found that the calculated neutron multiplication is 1.02132 (±3 pcm) and that the combined bias of the model and experimental uncertainty is below 500 pcm. Such discrepancy between the experimental and calculated keff is not uncommon in benchmarks for graphite-moderated systems. The model created through this effort paves the way to additional benchmarks targeting reactor physics quantities of interest beyond multiplication factor.