ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
A. Alhajri, V. Sobes, P. Ducru, B. Ganapol, B. Forget
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 813-824
Technical Paper | doi.org/10.1080/00295639.2021.1898923
Articles are hosted by Taylor and Francis Online.
A benchmark to verify the accuracy of neutron transport criticality solvers along the energy dimension was established. For the first time, the analytic solution of the flux amplitude was derived in the particular case of an infinite-homogeneous medium with isotropic scattering in the center of mass and an arbitrary number of no-threshold, neutral particle reaction resonances (e.g., radiative capture, fission, and resonance scattering). In this paper, the benchmark is extended to the adjoint transport problem, and a solution to the adjoint flux is derived. The adjoint flux solution is then combined with the forward flux to obtain expressions for an arbitrary-order cross section and resonance parameter sensitivity coefficients. Finally, numerical solutions are provided for a benchmark problem constituted of the first resonance of 239Pu, the 6.67-eV resonance of 238U, and a scattering isotope with a flat cross section, allowing for computational verification of the sensitivity coefficients and nuclear data uncertainty of current neutron transport criticality codes. Through these novel results, this analytic benchmark can serve as a reference to verify the sensitivity analysis of neutron transport criticality calculations.