ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. Alhajri, V. Sobes, P. Ducru, B. Ganapol, B. Forget
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 813-824
Technical Paper | doi.org/10.1080/00295639.2021.1898923
Articles are hosted by Taylor and Francis Online.
A benchmark to verify the accuracy of neutron transport criticality solvers along the energy dimension was established. For the first time, the analytic solution of the flux amplitude was derived in the particular case of an infinite-homogeneous medium with isotropic scattering in the center of mass and an arbitrary number of no-threshold, neutral particle reaction resonances (e.g., radiative capture, fission, and resonance scattering). In this paper, the benchmark is extended to the adjoint transport problem, and a solution to the adjoint flux is derived. The adjoint flux solution is then combined with the forward flux to obtain expressions for an arbitrary-order cross section and resonance parameter sensitivity coefficients. Finally, numerical solutions are provided for a benchmark problem constituted of the first resonance of 239Pu, the 6.67-eV resonance of 238U, and a scattering isotope with a flat cross section, allowing for computational verification of the sensitivity coefficients and nuclear data uncertainty of current neutron transport criticality codes. Through these novel results, this analytic benchmark can serve as a reference to verify the sensitivity analysis of neutron transport criticality calculations.