ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
S. Stimpson, A. Graham, B. Collins
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 778-793
Technical Paper | doi.org/10.1080/00295639.2021.1871994
Articles are hosted by Taylor and Francis Online.
Recent efforts in MPACT have focused on improving the performance of the 2D/1D subplane implementation to help target computational performance goals. This paper builds on previous efforts that targeted the use of subgrid treatments to improve the accuracy of control rod representation, presenting three additional applications of subgrid treatments with the goal of reducing the computational burden of simulations. These subgrid applications include treatment of spacer grids, thermal feedback, and axial reflector material representation. With these approaches, a single method of characteristics (MOC) plane can contain several different materials axially that are represented explicitly via subgrids on the coarse mesh finite difference (CMFD) mesh but are axially homogenized on the MOC mesh. This allows for a substantial reduction in the number of MOC planes needed in the calculation through the introduction of an approximate treatment, particularly with regard to the self-shielded cross sections and MOC-informed radial current coupling coefficients in CMFD.
Several test problems ranging from single rod to quarter core are used to assess the solution accuracy and performance of these various subgrid representations. Overall, the accuracy of the approximations seems very reasonable, with extremely small differences in eigenvalue observed and maximum pin power errors in the 0.5% to 1.0% range. Several cases show substantial value in the compromise between accuracy and computational performance. Others highlight the new computational hurdles that future research will aim to resolve.