ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Ryoichi Kondo, Tomohiro Endo, Akio Yamamoto, Satoshi Takeda, Hiroki Koike, Kazuya Yamaji, Daisuke Sato
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 694-716
Technical Paper | doi.org/10.1080/00295639.2020.1863066
Articles are hosted by Taylor and Francis Online.
A Resonance calculation using energy Spectrum Expansion (RSE) method is newly proposed in this paper. In this method, ultra-fine-group (UFG) spectra appearing in a resonance calculation are expanded by orthogonal bases on energy, which are extracted from the UFG spectra obtained in homogeneous geometry with various background cross sections using singular value decomposition and low-rank approximation. Namely, this method is based on the concept of a reduced order model. A neutron transport equation for flux moments (expansion coefficients) similar to the conventional one is derived and is numerically solved. This method applies to two benchmark problems in which a resonance interference effect and spatial self-shielding effect can appear. The results indicate that this method accurately predicts the reference effective cross sections and reaction rates obtained from direct UFG calculation in heterogeneous geometry.