ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ryoichi Kondo, Tomohiro Endo, Akio Yamamoto, Satoshi Takeda, Hiroki Koike, Kazuya Yamaji, Daisuke Sato
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 694-716
Technical Paper | doi.org/10.1080/00295639.2020.1863066
Articles are hosted by Taylor and Francis Online.
A Resonance calculation using energy Spectrum Expansion (RSE) method is newly proposed in this paper. In this method, ultra-fine-group (UFG) spectra appearing in a resonance calculation are expanded by orthogonal bases on energy, which are extracted from the UFG spectra obtained in homogeneous geometry with various background cross sections using singular value decomposition and low-rank approximation. Namely, this method is based on the concept of a reduced order model. A neutron transport equation for flux moments (expansion coefficients) similar to the conventional one is derived and is numerically solved. This method applies to two benchmark problems in which a resonance interference effect and spatial self-shielding effect can appear. The results indicate that this method accurately predicts the reference effective cross sections and reaction rates obtained from direct UFG calculation in heterogeneous geometry.