ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Maryam Medghalchi, Nasser Ashgriz
Nuclear Science and Engineering | Volume 195 | Number 6 | June 2021 | Pages 648-663
Technical Paper | doi.org/10.1080/00295639.2020.1827874
Articles are hosted by Taylor and Francis Online.
Growth of a nonisothermal bubble on a heated horizontal surface in a subcooled flow is studied to determine the significance of different heat transfer mechanisms on the bubble growth. The heat transfer mechanisms that are considered are (1) microlayer evaporation, (2) transient thermal boundary layer conduction, and (3) bubble surface evaporation and condensation. The results indicate that a different heat transfer mechanism dominates the bubble growth at different stages of the bubble growth. And, the temperature gradient inside the bubble decreases after bubble liftoff in high Reynolds numbers. The results also show an oscillatory heat flux during the initial stages of the bubble growth.