ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Maryam Medghalchi, Nasser Ashgriz
Nuclear Science and Engineering | Volume 195 | Number 6 | June 2021 | Pages 648-663
Technical Paper | doi.org/10.1080/00295639.2020.1827874
Articles are hosted by Taylor and Francis Online.
Growth of a nonisothermal bubble on a heated horizontal surface in a subcooled flow is studied to determine the significance of different heat transfer mechanisms on the bubble growth. The heat transfer mechanisms that are considered are (1) microlayer evaporation, (2) transient thermal boundary layer conduction, and (3) bubble surface evaporation and condensation. The results indicate that a different heat transfer mechanism dominates the bubble growth at different stages of the bubble growth. And, the temperature gradient inside the bubble decreases after bubble liftoff in high Reynolds numbers. The results also show an oscillatory heat flux during the initial stages of the bubble growth.