ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Forrest Shriver, Cole Gentry, Justin Watson
Nuclear Science and Engineering | Volume 195 | Number 6 | June 2021 | Pages 626-647
Technical Paper | doi.org/10.1080/00295639.2020.1852021
Articles are hosted by Taylor and Francis Online.
Traditional light water reactor simulations are usually either high fidelity, requiring hundreds of node-hours, or low fidelity, requiring only seconds to run on a common workstation. In current research, it is desirable to combine the positive aspects of both of these simulation types while minimizing their associated negative costs. Because neural networks have shown significant success when applied to other fields, they could provide a means for combining these two classes of simulation. This paper describes a methodology for designing and training neural networks to predict normalized pin powers and within a reflective two-dimensional pressurized water reactor assembly model. The developed methodology combines computer vision approaches, modular neural network approaches, and hyperparameter optimization methods to intelligently design novel network architectures. This methodology has been used to develop a novel new architecture, LatticeNet, which is capable of predicting pin-resolved powers and at a high level of detail. The results produced by this novel architecture show the successful prediction of the target neutronics parameters under a variety of typical neutronics conditions, and they indicate a potential path forward for neural network–based model development.