ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Hosein Moayedi, Soheil Hajibaba, Hossein Afarideh, Mitra Ghergherehchi, Masoumeh Mohamadian
Nuclear Science and Engineering | Volume 195 | Number 6 | June 2021 | Pages 614-625
Technical Paper | doi.org/10.1080/00295639.2020.1848199
Articles are hosted by Taylor and Francis Online.
In this paper, a beta radioluminescent battery with different radioisotopes is studied, and different parameters of the proposed structure are optimized. These parameters include the luminescent layer thickness, the doping concentration in the semiconductor P-N junction, etc. Some of the parameters have an inverse effect on the battery outputs. So, a trade-off is sought between them to increase efficiency. Each part of the proposed structure is divided into much smaller parts in the simulations to ensure proper tracking of photons and the creation of electron holes in the semiconductor layer. Also, the passage of particles through each layer is carefully reviewed and calculated in terms of particle crossing percentage, their reflection percentage, rate of self-absorption, etc. Finally, the power, open-circuit voltage, and short-circuit current density of the proposed battery versus the main parameter changes are presented.