ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Priscila Palma Sanchez, Adimir dos Santos
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 555-562
Technical Note | doi.org/10.1080/00295639.2020.1854541
Articles are hosted by Taylor and Francis Online.
In order to ensure safety in a nuclear power plant, operation and protection systems must take into account safety parameters, whether to guide operators or to trip the reactor in emergency cases. Especially in a boron-free small modular reactor (SMR) where reactivity and power are controlled exclusively by rod banks, the power distribution is mostly influenced by its movements affecting the power peaking factor (PPF), which is an important parameter to be considered. The PPF relates the maximum local linear power density to the average power density in a fuel rod indicating a high neutron flux that can cause fuel rod damage. In this technical note, 2117 samples from simulations of an idealized boron-free SMR controlled exclusively by rod banks were used to generate a Support Vector Machine (SVM) model capable of estimating the PPF as a function of control rod bank positions. Such model could be used to predict the maximum PPF in the reactor core by carrying out simple calculation. Residing in a SVM parameter grid search and a 10-cross-validation process in the training set to reach an optimized and robust model, the results have shown a root-mean-squared error of about 0.1% consistent for both training and testing sets.