ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Benjamin Dechenaux
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 538-554
Technical Paper | doi.org/10.1080/00295639.2020.1847980
Articles are hosted by Taylor and Francis Online.
The analysis of the results of a depletion code is often considered a tedious and delicate task, for it requires both the processing of large volumes of information (the time-dependent composition of up to thousands of isotopes) and an extensive knowledge of nuclear reactions and associated nuclear data. From these observations, dedicated developments have been integrated to the upcoming version of the Monte Carlo depletion code VESTA 2.2 in order to implement an innovative representation of depletion problems. The aim is to provide users with an adaptable and efficient framework to ease the analysis of the results of the code and facilitate their interpretation. This effort ultimately culminates in the development of the representation of the isotopic evolution of a given system as a directed graph.
In this paper, it is shown that the Bateman equation encoded in the VESTA code indeed possesses a natural interpretation in terms of a directed cyclic graph, and it is proposed to explore some of the insight one can gain from the graph representation of a depletion problem. Starting from the new capabilities of the code, it is shown how one can build on the wealth of existing methods of graph theory in order to gain useful information about the nuclear reactions taking place in a material under irradiation. The graph representation of a depletion problem being especially simple in activation problems—for then only a limited number of nuclides and reactions are involved—the graph representation and its associated tools will be used to study the evolution of the structure materials of a simplified model of the ITER fusion reactor.