ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Yeni Li, Hany S. Abdel-Khalik, Acacia J. Brunett, Elise Jennings, Travis Mui, Rui Hu
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 520-537
Technical Paper | doi.org/10.1080/00295639.2020.1840238
Articles are hosted by Taylor and Francis Online.
The System Analysis Module (SAM), developed and maintained by Argonne National Laboratory, is designed to provide whole-plant transient safety analysis capabilities for a number of advanced non–light water reactors, including sodium-cooled fast reactor (SFR), lead-cooled fast reactor (LFR), and molten salt reactor (MSR)/fluoride-salt-cooled high-temperature reactor (FHR) designs. SAM is primarily constructed as a systems-level analysis tool, with the potential to incorporate reduced order models from three-dimensional computational fluid dynamics (CFD) simulations to improve characterization of complex, multidimensional physics. It is recognized that the computational expense associated with CFD can be intractable for various engineering analyses, such as uncertainty quantification, inference, and design optimization. This paper explores the reducibility of a SAM model using recent advances in randomized linear algebra techniques, which attempt to find recurring patterns in the various realizations generated by a model after randomly perturbing all its input parameters. The reduction is described in terms of fewer degrees of freedom (DOFs), referred to as the active DOFs, for the model variables such as input model parameters and model responses. The results indicate that there is significant room for additional reduction that may be leveraged for additional computational gains when employing SAM for engineering-intensive analyses that require repeated model executions. Different from physics-based reduction approaches, the proposed approach allows one to estimate upper bounds on the reduction errors, which are rigorously developed in this work. Finally, different methods for surrogate model construction, such as regression and neural network–based training, are employed to correlate the input and output active DOFs, which are related back to the original variables using matrix-based linear transformations.