ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yeni Li, Hany S. Abdel-Khalik, Acacia J. Brunett, Elise Jennings, Travis Mui, Rui Hu
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 520-537
Technical Paper | doi.org/10.1080/00295639.2020.1840238
Articles are hosted by Taylor and Francis Online.
The System Analysis Module (SAM), developed and maintained by Argonne National Laboratory, is designed to provide whole-plant transient safety analysis capabilities for a number of advanced non–light water reactors, including sodium-cooled fast reactor (SFR), lead-cooled fast reactor (LFR), and molten salt reactor (MSR)/fluoride-salt-cooled high-temperature reactor (FHR) designs. SAM is primarily constructed as a systems-level analysis tool, with the potential to incorporate reduced order models from three-dimensional computational fluid dynamics (CFD) simulations to improve characterization of complex, multidimensional physics. It is recognized that the computational expense associated with CFD can be intractable for various engineering analyses, such as uncertainty quantification, inference, and design optimization. This paper explores the reducibility of a SAM model using recent advances in randomized linear algebra techniques, which attempt to find recurring patterns in the various realizations generated by a model after randomly perturbing all its input parameters. The reduction is described in terms of fewer degrees of freedom (DOFs), referred to as the active DOFs, for the model variables such as input model parameters and model responses. The results indicate that there is significant room for additional reduction that may be leveraged for additional computational gains when employing SAM for engineering-intensive analyses that require repeated model executions. Different from physics-based reduction approaches, the proposed approach allows one to estimate upper bounds on the reduction errors, which are rigorously developed in this work. Finally, different methods for surrogate model construction, such as regression and neural network–based training, are employed to correlate the input and output active DOFs, which are related back to the original variables using matrix-based linear transformations.