ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Yeni Li, Hany S. Abdel-Khalik, Acacia J. Brunett, Elise Jennings, Travis Mui, Rui Hu
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 520-537
Technical Paper | doi.org/10.1080/00295639.2020.1840238
Articles are hosted by Taylor and Francis Online.
The System Analysis Module (SAM), developed and maintained by Argonne National Laboratory, is designed to provide whole-plant transient safety analysis capabilities for a number of advanced non–light water reactors, including sodium-cooled fast reactor (SFR), lead-cooled fast reactor (LFR), and molten salt reactor (MSR)/fluoride-salt-cooled high-temperature reactor (FHR) designs. SAM is primarily constructed as a systems-level analysis tool, with the potential to incorporate reduced order models from three-dimensional computational fluid dynamics (CFD) simulations to improve characterization of complex, multidimensional physics. It is recognized that the computational expense associated with CFD can be intractable for various engineering analyses, such as uncertainty quantification, inference, and design optimization. This paper explores the reducibility of a SAM model using recent advances in randomized linear algebra techniques, which attempt to find recurring patterns in the various realizations generated by a model after randomly perturbing all its input parameters. The reduction is described in terms of fewer degrees of freedom (DOFs), referred to as the active DOFs, for the model variables such as input model parameters and model responses. The results indicate that there is significant room for additional reduction that may be leveraged for additional computational gains when employing SAM for engineering-intensive analyses that require repeated model executions. Different from physics-based reduction approaches, the proposed approach allows one to estimate upper bounds on the reduction errors, which are rigorously developed in this work. Finally, different methods for surrogate model construction, such as regression and neural network–based training, are employed to correlate the input and output active DOFs, which are related back to the original variables using matrix-based linear transformations.