ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. M. M. Ali, Hanaa H. Abou-Gabal, Nader M. A. Mohamed, Ayah E. Elshahat
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 509-519
Technical Paper | doi.org/10.1080/00295639.2020.1839248
Articles are hosted by Taylor and Francis Online.
The neutron spectrum is an essential factor in making possible the increase of 233U isotope breeding from thorium fuel in an accelerator-driven subcritical (ADS) system; therefore, studying the effects of various moderators and coolants on 233U breeding is an important step in ADS performance. This study aims to evaluate the effect of using different moderators and coolants on the ADS system characteristics. Sodium, which was the most common coolant used in ADS reactors, was replaced by light water (LW) and graphite + CO2, separately. In this study, we used uranium nitride as the seed fuel associated with ThO2 as the blanket fuel for all cases. The Monte Carlo transport code MCNPX 2.7.0 was used to calculate neutronic parameters such as effective multiplication factor (Keff), power peaking factor (Pmax/Pav) in the radial direction of the ADS reactor core, actinide isotope evolution during fuel burnup, and power fraction from each fuel type for all cases. The results show that the utilization of graphite as the moderator with CO2 as the coolant allows more 233U production in thorium fuel compared with sodium and LW. On the other hand, LW showed great ability for plutonium and minor actinide transmutation and for energy generation.