ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
HyeonTae Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 464-477
Technical Paper | doi.org/10.1080/00295639.2020.1839342
Articles are hosted by Taylor and Francis Online.
A thermomechanical fuel performance analysis module is implemented in the Korea Advanced Institute of Science and Technology Monte Carlo (MC) neutron transport code iMC. The module is designed particularly for advanced three-dimensional (3-D) fuel concepts, so an unstructured tetrahedral mesh grid is adopted for geometry flexibility. The cellwise detailed power density distribution is tallied from the MC transport and transferred to the thermomechanics module for the heat transfer, thermal expansion, and stress analysis. In this paper, a recently proposed 3-D fuel concept called the centrally shielded burnable absorber (CSBA) model was considered for numerical studies. Several fuel models were solved by the iMC code: a single CSBA pellet, a three-ball–loaded CSBA pellet, and a CSBA fuel-loaded 17 × 17 fuel assembly. From the analysis results, it was discovered that the uncertainty of the detailed power density distribution hardly affects the uncertainty of the thermomechanical analysis due to dissipation via conduction. Also, the importance of using detailed intrafuel power distribution data in such a thermal neutron spectrum has been demonstrated, showing about 30 K overestimation of peak temperature compared to the conventional uniform power assumption.