ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Longkun He, Pengfei Liu, Bo Kuang
Nuclear Science and Engineering | Volume 195 | Number 4 | April 2021 | Pages 367-390
Technical Paper | doi.org/10.1080/00295639.2020.1822124
Articles are hosted by Taylor and Francis Online.
Jet fragmentation greatly influences the possibility of steam explosion and the formation of a debris bed when a molten corium jet falls into subcooled coolant during a severe accident of a nuclear reactor—which is called fuel and coolant interaction (FCI). The characteristics of different jet fragmentation mechanisms and the conditions under which they play a major role are still in doubt. Experiments were carried out to investigate the fragmentation characteristics of melt jet interaction with water at medium temperature (~680°C) and high temperature (1800°C to 2150°C). Molten metal [tin or Type 304 stainless steel (304SS)], oxide (alumina), and their mixture (304SS-alumina) were used as melt materials to obtain different fragmentation mechanisms. In addition, the effects of melt temperature, water subcooling, and water depth on jet fragmentation were also studied. Through comprehensive analysis of high-speed photography, dynamic pressure, water temperature variation, and jet breakup length during interactions as well as the morphology and size of debris after interactions, it was found that the characteristics of jet fragmentation varied greatly at different melt temperatures and water subcooling due to competition between hydrodynamic fragmentation and thermodynamic fragmentation caused by boiling. In addition, under high-temperature conditions, fragmentation of alumina was much greater than 304SS due to the fracture of solidifying melt caused by thermal stress. Finally, five kinds of mechanisms of melt jet fragmentation under different conditions are summarized.