ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert A. Hall, William J. Marshall, Elmar Eidelpes, Brian M. Hom
Nuclear Science and Engineering | Volume 195 | Number 3 | March 2021 | Pages 310-319
Technical Paper | doi.org/10.1080/00295639.2020.1801319
Articles are hosted by Taylor and Francis Online.
This work presents an assessment of the applicability of existing benchmark critical experiments to the criticality safety code validation for a large-capacity high-assay low-enriched uranium (HALEU) transportation package concept. Numerous next-generation nuclear reactor designs require HALEU fuel, which is characterized by an enrichment between 5 and 20 wt% 235U. The U.S. Department of Energy (DOE) has proposed to recover and downblend highly enriched uranium from DOE-owned used nuclear fuel to accelerate the demonstration of commercially viable microreactor technologies. One element of the infrastructure needed to demonstrate HALEU-fueled reactors is the ability to safely transport enriched product to be used for fuel fabrication. There is uncertainty as to whether existing critical benchmark experiment data are sufficient to support criticality safety code validation for HALEU transportation applications. The anticipated chemical form of the HALEU in the proposed transportation concept is UO2 with 20 wt% 235U/U. The concept uses a combination of an existing transportation packaging design and a novel basket design, including borated aluminum flux traps. The basket provides space for 18 reusable, stainless steel canisters that contain the HALEU. In 10 CFR 71, normal conditions of transport (NCTs) and hypothetical accident conditions (HACs) are defined for fissile material transportation packages. NCT and HAC KENO-VI models of the transportation package were developed using the Standardized Computer Analyses for Licensing Evaluation (SCALE) 6.2.3 computer code package, and optimum moderation conditions were determined using the SCALE SAMPLER sequence. The SCALE Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) sequences were then used to compare the neutronic characteristics of 1584 International Criticality Safety Benchmark Evaluation Project benchmark critical experiments with the NCT and HAC HALEU transportation models. The TSUNAMI integral correlation coefficient ck was the criterion used to rank neutronic similarity. Thirty-four experiments were identified as similar (ck ≥ 0.9) to the NCT model, and 55 experiments were identified as similar to the HAC model. Hundreds of experiments were also identified as at least marginally similar (ck ≥ 0.8) to both models. The results indicate that additional critical experiments are unlikely to be needed to support HALEU transportation criticality safety analyses for package concepts similar to the concept package analyzed.